400 TL ve üzeri alışverişlerinizde KARGO BEDAVA

Sınırlarını Aşan Çocuklar

Sınırlarını Aşan Çocuklar

Anat Baniel

198,75 TL
- +
Kargo 400 TL üzeri KARGO BEDAVA!
Siparişleriniz 1 İŞ GÜNÜNDE KARGODA!
Stok Durumu: Stokta var
  • Kitap Hakkında
  • Yazar Hakkında
  • Değerlendirmeler (0)
Yayınevi: Doğan Kitap
Sayfa Sayısı: 280
Baskı Tarihi: Aralık 2015
Ebat: 14 x 21 mm
Barkod: 9786050930955

Otizm, Asperger Sendromu, dikkat eksikliği hiperaktivite bozukluğu olan çocuklar için etkili sonuçlar…

Özel gereksinimi olan çocuğunuza nasıl yardımcı olabilirsiniz? Onun yeteneklerini geliştirmek için neler yapabilirsiniz? Anat Baniel Metodu nedir, hangi durumlarda fayda sağlar?

Çocuklar gelişimleri bakımından farklılık gösterir. Bazı çocuklar özeldir; onları özel kılan şey bir sorun gibi görünse de aslında sadece özel bir yaklaşıma ihtiyaçları vardır. Bu ihtiyaçların nasıl karşılanabileceğinden yola çıkan Anat Baniel, beynin muhteşem değişim gücünü de kullanarak tüm anne babalar ve eğitimciler için kendi adını taşıyan özel bir metot geliştirdi.

Anat Baniel Metodu, çocukları yapamadıklarına zorlamak yerine bağ kurmaya odaklanarak, onların ve anne babaların stresten arınmalarını, odaklanmalarını ve gelişmelerini sağlıyor. En önemlisi de tanıları ne olursa olsun, çocukların potansiyellerini en iyi şekilde kullanarak sınırlarını aşmalarına yardımcı oluyor. Anat Baniel, beynin kendini olumlu yönde değiştirmesine imkân veren muhteşem yetenekle nasıl mucizeler yaratılabileceğini ustalıkla anlatıyor. Unutmayın, hiçbir çocuk “umutsuz vaka” değildir, sadece onu doğru yönlendirmek gerekir...

Anat Baniel

Anat Baniel İsrail’de doğdu. Binlerce çocuk ve aileyle yaptığı çalışmalardan edindiği otuz yılı aşkın deneyimle, araştırmalarını ve devrim yaratan keşiflerini birleştirerek Anat Baniel Metodu’nu geliştirdi. Özel gereksinimi olan çocuklarla yaptığı çalışmalarla dünya çapında tanınan Baniel, California’da kendi adına açtığı merkezde çocuklara ve ebeveynlerine yardımcı olmayı sürdürüyor.

0 Değerlendirme
  • 5 Puan 5
  • 4 Puan 4
  • 3 Puan 3
  • 2 Puan 2
  • 1 Puan 1